ARI Research Note 88-01

>
© C Rt
o LispSEI: The Programmer's Manual v
N
- Hans Tallis
< University of California at Irvine
| \;
0 ¥
< N
5
]
for '
Contracting Officer's Representative
Judith Orasanu
14
Proc
BASIC RESEARCH LABQRATORY S
Michael Kaplan, Director DTr e - '
fQELECTE
&, FEB1 01983 " 3
["
Py
[]
u. s. Army oL
- . I'-‘ ’. ’
Research Institute for the Behavioral and Social Sciences ;«{:"t
RS LY
';'h::
Januarv 1988 v

Approved for public release; distribution unilimited.

- 88) 0 $ 0 3 4

O O N (A T A e A e A S O e e

U. S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency under the Jurisdiction of the

Deputy Chief of Staff for Personnel

WM. DARRYL HENDERSON
EDGAR M. JOHNSON COL, IN .
Technical Dircctor Commanding

oo R e

Research accomplished under contract
for the Department of the Army

University of California at Irvine

Accession For

Technical review by NTIS GRA&I
DTIC TAB %
Dan Ragland Unannounced 0)
Justifioation
Dy,c BY
Distribution
o | pistrivation/
"o Avallability Codes

Avail and/or
Dist Special

A-l!

This report, as submitted by the contractor, has been clesred for rolease 10 Defense Tochnica! information Center
(DTIC) 10 comply with regulstory requiterments. It has been given no primary distribution other than to DTIC
end 'will be available only through DTIC or other reference services such as the National Technical information
Service (NTIS). The vitws. cpiniong, enc/or findings contained in this repon sre those of the authoris) and
should not be construed as an officio: Ceparimens of the Army position, policy, or decision, unless 10 designated
by other otficia! documentation,

D S T NN D e

o

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

-

.
1 e -
- -

REPORT DOCUMENTATION PAGE pErEAD INSTRUCTIONS]
1. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER ¥
ARI Research Note 88-01 ‘
s TITLE (and Subtitie) 5. TYPE OF REPORT & PERIOD COVERED X
Interim Report
LispSEI: The Programmer's Manual January 86 - January 87 q
6. PERFORMING ORG. REPORT NUMBER :
()
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) g
. v
Hans Tallis MDA903-85-C-0324 ‘
.
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK '
. . AREA & WORK UNIT NUMBERS
Department of Information and Computer Science, 2Q161102874F ¢
University of California at Irvine b
Irvine, CA 92717 3
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE ;
U.S. Army Research Institute for the Behavioral January 1988 :
and Social Sciences, 5001 Eisenhower Avenue, 13. NUMBER OF PAGES 55
Alexandria, VA 22333-5600 18 5
JTI UONITORING AGENCY NAME & ADDRESS(If different from Confrolling Office) | 15. SECURITY CLASS. (of this report) :g
.I
- - Unclassified .
18s. DECL ASSIFICATION/ DOWNGRADING -
SCHEDULE o :‘
76, DISTRIBUTION STATEMENT (of this ReporD) Y
N
Approved for public release; distribution unlimited. f
:~
17. DISTRISUTION STATEMENT (of the abatract entered in Block 20, If ditfecrent from Report) ':
“
- - !%
1. SUPPLEMENTARY NOTES A ‘
; Judith Orasanu, contracting officer's representative ‘
19. KEY WORDS (Continue on reverss side If 'y and identify by block ber)
Vorld Modeler ph
Computer Models i
Artificial Intelligence f
Lisp .
SEI r
20. ABSTRACT (Centhuse em roverse side N naseevasy sud idontity by block number) -
This research note provides a 1isting of the lowest level Lisp functions, as nd
well as a more precise definition of the capabilities of the different layers
of the SEI. It also separates filtering from basic copying operations, shows X
how to hide the C code within the SEI, and cleans up some other unnecessary .
hair in the current SEI implementation. »
N
U
)

romse .
DD 00 » WUJI3 e£0imon oF 1 nov 68 1s ossoLETE UNCLASSIFIED "

]' SECUMTY CLASSIFICATION OF THIS PAGE (When Data Entered)

-

LU S)

Ty T T 1 L) () s > X T T R S A oy
IERGEDN i p OO s y
. W K DS RO ACL AU T A N W0,I.. U‘i.l‘- [\ .l' ..»‘I...Q'n.l.t.l.r“'o l.n (b l'r » '.‘"n W ASOACAAN .v CAGAN N L »y o .'! (L]

LispSEl: The Programmer’s Manual
Hans Tallis

i o

(/)’ﬂ\e, Purpose of LispSEI and This Document s =,
Sﬂnde once and for all, all C code within the SEI

2>Prov1de a convenient listing of lowest level Lisp functions accessmg and changing state in the SEI
[

3>Prov1de a more precise definition of the capabilities of the dlffercnt layers of the SEIL Current]y
the functions provided via FRANZSELL (for example) represent a mix of simple data copying
operations (for cxample, passing the list of world objects on up to the organism) as well as more
intelligent operations (the multi-step implementation of “turn” for example). LispSEI will
provide only the simple data passing and control operations defined below, with the more
complex operations being defined elsewhere in the SE}).

4)Separate out filtering operations from the basic copying of the world state.
filtering/massaging will be taking place in 2 number of library modules discussed elsewhere. - l/

) A
5 Clean up some other unnecessary hair present in the current SEX im lementation. , (e cuar
<

w"i‘f ¢.1L ',\" ",.—uucb, /f\:c und 5),,«1"—’(,*"’ \;

LispSEl is only meant to provide a minimal set of operations an organism could request. It is entirely possible
that additional functionality could be added to the LispSEI later. N.B.: Currently it is not expected that
Lisp-based organisms will be referencing LispSEIl directly; rather, they will interact through the SEI library
functions described in a separate document.

The organism interacts with the SEI in exactly three ways:

1. The organism receives state information from the SEI (objects in the world, emissions, and other
miscellaneous information specific to the current SEL)

2. The organism sends state-change requests to the SEI (emissions, motions of the organism,
operations of the organism’s parts, etc.) Note that this may be a superset of effector requests.

3. The organism sends control commands to the SEI (get world changes, send "ok to proceed,” and
20 on).
Currently EFFECT.C implements functions of the second sort, while PERCEIVEC implements functions of the
first and third sort.
Changes
1. PERCEIVEC will be split into two files, PERCEIVEC and SEICONTROLC, with the latter
implementing control commands from the organism to the SEI.

2. The SEI will be written entirely in C and Lisp. LispSEI will be able to run under either Franz or
Lucid Common Lisp (using the same source.)

W LS - » - " LI LY T
R I N OO MO M RO X i '-.n. o) ..'c!.‘ IO

AR

wy

O T o R T I I R T O O PO O T O T O IR PO PO T O T O T O O LR O O™ "Bt e ® 0 Gat Bk B

3. The batch of functions dcfined in file LisPsEl (which implements LispSEI) will call functions in
PERCEIVE.C. SEICON FROL.C, and EITECT.C. The higher-level processing portions of the SEI (to be
doscribed in a future document) will call exclusively functions in LISPSELC.

4. RKLINK.C, SEILINK SLISP, and SEIFACESLISP will all disappcar. [We no longer write Spice Lisp
organisms.)

5. Certain actions of PERCFIVE.C (viz automatically copying the whole world of objccts from C into
Lisp) may no longer automatically be done (at the implementor’s discretion).

6. The following will be the typical cycle for calls into LispSEL. The order is not too critical; in
particular, steps b through e may occur in any order.

a. (Receive-Updated-World).

b. Request descriptions of objects by objNumber, one at a time. (The objNumber is a unique
integer identifying that object within the world.) Alternately, individual fields of objects
may be referenced.

¢. Request information from other senses, such as a list of things smelled, or a list of audible
emissions, and so on.

d. Request some effector actions, such as changing the object’s motion vector, or emitting a
sound, or swinging an arm around.

e. Make other (illegal) changes to world objects. (Intuitively, illegal changes are those which a
typical organism in a world could not easily carry out, such as changing the velocity of
arbitrary objects at a distance.)

f. (Ok-To-Proceed) to end acycle. _
The LispSEI thus provides essentially unlimited access to the world data structure and other state
information.
Newly Defined Data Types and Their Accessing Functions

These are pew to the LispSEl implementation. They are meant primarily to aid in the passing of data in a
reasonably efficient way. The data types are just unguaranteed hints as to how these data packets might be
implemented in LispSEL. The user of LispSE! should only access these objects via the accessing functions
described next 1o each data type. Remember that the Set-ing functions operate only on the data object, and do
not affect the actual objects, emissions, etc. in the world.

o (setq example-Matrix-Type (make-array 4 4

:element-type 'integer
:initial-element 0))

(This is not strictly a data type, rather a template for one.)

(Get-Matrix-Type-Elements-As-List Matrix-Type) returns the elements of a Matrix-
Type object as a list in the order (Matrix-Type{0,0) Matrix-Typc{0,1) Matrix-
Typef0,2] ... MatrixType(3,3)).

“'-"‘v".".-'" I\ 'i.r Wt . ‘:‘I‘-I'- -\‘. - L8 A ‘ ‘.} !"n.‘." ‘, .. .I‘.l“. M'{ .(F ..L |“4 (A) X .‘.‘ 'J!‘.f‘d‘ﬁ‘ 1 ¥

IR

-

T T e -

(Get-Mattix-Typc-Elements-As-Arriy Matrix-Type) returns a Lisp array.

o (declare-type Vector-Type
(X 0.0 :type double)
(Y 0.0 :type double)
(2 0.0 :type double))

(Get-Vector-Type-X Vector Type) returns a double.

(Set-Vector-Type-X value Vector Type) scts the X component
of VectorType to be value.

(Get-Vector-Type-Y VectorType) does the obvious thing.
(Set-Vector-Type-Y value VectorType) does the obvious thing.
(Get-Vector-Type-Z Vector Type) does the obvious thing.
(Set-Vector-Type-Z walue Vector Type) does the obvious thing.

o (declare-type Vertex-Type
(X 0.0 :type double)
(Y 0.0 :type double)
(Z 0.0 :type double))

(Get-Vertex-Type-X Vertex-Type) docs the obvious thing.

(Get-Vertex-Type-Y Vertex-Type) does the obvious thing.

(Get-Vertex-Type-Z Vertex-Type) does the obvious thing.
Set-ing functions are as for Vector-Type.

e (declare-type Apply-Type

Force ' :Vector-Type
(Force-Time 0.0 :type double)
Torque ;Vector-Type

(Torque-Time 0.0 :type double)
(Magnetic-Force 0.0 :type double)’
(Magnetic-Time 0.0 :type double))

(Get-Apply-Type-Force Apply-Type) rerurns a Vector-Type, which can be further
accessed via the accessors defined above,

(Get-Apply-Type-Force-Time Apply-Type) does the obvious thing.

(Get-Apply-Type-Torque Apply-Type) does the obvious thing.

(Get-Apply-Type-Torque-Time Apply-Type) does the obvious thing.

(Get-Apply-Type-Magnetic-Force Apply-Type) does the obvious thing.

(Get-Apply-Type-Magnetic-Time Apply-Type) does the obvious thing.
Set-ing functions are as for Vector-Type.

o (declare-type Color-Type
(Red-Component 0 :type integer)
(6reen-Component 0 :type integer)
(Blue-Component 0 :type integer))

Accessors similar to those for Apply-Type. Set-ing functions are as for Vector-Type.

To ol

a
e

FEEXXR N,

'S ouad
e

“'-P" ol

o

VIR I T i o

-

&8 Ny Y RN

P s Rl
‘e

U A

-~

13 oa A bet e g B RS i g by et ke O it da e dav et gat Ra® Sat et B, ¢ g6 ga gad B8 -y .-

o (declare-type Tastc-Type
(Sweet 0 :type integer)
(Sour 0 :type integer)
(Bitter 0 :type integer)
(Salty 0 :type integer))

Accessors similar to those for Apply-Type. Set-ing functions are as for Vector-Type.

o (declare-type Object-Type
(Object-Number O :type integer)
(Object-Name ™" :type string)
(Previous-Object O :type integer)
(Next-Object 0 :type integer)
(Part-0f 0 :type integer)
(Part-Collision 0 :type integer)
(Part-Magnetism 0 :type integer)

Transform ;Matrix-Type
(Scale-Factor 0.0 :type double)

Location ;Vector-Type
Rotation ;Vector-Type
Velocity :Vector-Type
Rotational-Velocity ;Vector-Type
Acceleration :Vector-Type
Rotational-Acceleration ;Vector-Type
Forces sApply-Type

(Buoyancy 0.0 :type double)

Mass-Center ° ;Vector-Type

(Mass 0.0 :type double)

(Enclosure 0.0 :type double)
(Kind-0f-Object 0 :type integer)
(Composed-0f 0 :type integer) ;for Complex
(Changed-Below 0 :type integer)

(Elasticity 0.0 :type double) ifor Prim
(Restitution 0.0 :type double)

(Friction 0.0 :type double)

Inside-Color ;Color-Type
Outside-Color :Color-Type
(Outside-Surface-Texture 0 :type integer)
(Inside-Surface-Texture 0 :type integer)

Taste ;Taste-Type
(Temperaturs 0.0 :type double)
Axis ;Vector-Type; for Cylinder

(Height 0.0 :type double)
(Radius 0.0 :type doudle)

Normal :Vector-Type; for Polygon
Vertices) : 11 note: a 1ist of
: Vertex-Types i!

Accessors similar to those for Apply-Type, except:
(Get-Object-Type- Vertices Object- Type) returns a list of Vertex-Types.
Also, we have the function

(Get-Object-Slet sior objNumber) returns the value of the slot

for the indicated objNumber. Slot names for this function are formed by
prependiug a colon to the name of the associated accessor function for
Object-Type without the "Ger-" prefix. Thus, (Get-Object-Slot

AAAAA

-

PO TE N g AENTS

<

AN N R ATACN A R AL VG WERCRT AR AERTATL

R LNy T UL MO VO LU TR R AR A AR U M VNN Y AW RN LW U DN L OW DR OU T T O T VW v e

“Qbject-Type-Nexi-Qbject 7) returns the same thing as 1
(Get-Object-Type-Next-Object (Ohject 7)) returns. -

Set-ing functions are as for Vector-Type. '

e (declare-type Emission-Type

(Emission-ID 0 :type integer) e
(Next 0 :type integer) B
(Previous 0 :type integer) s
(Emission-Type 0 :type integer) ;
Origin iVector-Type :
(Time 0.0 :type double) J
(Intensity 0 :type integer) A
(Spread 0.0 :type double) &

(Diffusion 0.0 :type double)
(Decay 0.0 :type double)

o (Object-Head) returns the objNumber of the head object for the world.

(Duration 0.0 :type double) ' 3
(Rep 0 :type integer) "
(Bytes 0 :type integer) o
Desc ;a vector of size Bytes .:
Accessors similar to those for Apply-Type, except:

(Get-Emission-Type-Desc-As-List Emission-Type) returns the vector as a list. 4
(Get-Emission-Type-Desc-As-Array Emission-Type) returns the vector as a Lisp array. iy
Set-ing funcu'ons are as for Vector‘l‘ype. ' !
W
e (declare-type Contact-Type M
(Object1l 0 :type integer);these 4 are Oijumbers _ :
(Objecti-part O :type integer) -
(Object2 0 :type integer) y
(Object2-part 0 :type integer) -
Point : : Vector-Type ‘
Force ; Vector-Type y

Magnetism-Flag) ; boolean
Accessors similar to those for Apply-Type. Set-ing functions are as for Vector-Type. .
A List of Functions :
This is a list of the functions provided in Lisp by LISPSEIL. o
Receiving State Information
Al

o (Organism-Number) returns the objNumber of the organism.

o (Object objNumber) returns an Object-Type corresponding to the world object identified as | | :
objNumber.

o (Emission-Head) returns the emitNumber of the head emission for the world. "

o (Emission emitNumber) returns an Emission-Type corresponding to the world emission identified N\
as emitNumber. o

o (Contacts) returns a list of all Contact-Types for the world.

o (Gravity) returns a Vector-Type spccifying the gravity vector.
o (Time-Step) returns the number of scconds in a cycle.
o (World-Time) rcturns the current world time,

o (World-Steps) returns the number of world steps in a cycle. Typically this is used only by the
World Master.

o (Directional-Light-Vector) returns a Vector-Type specifying the directional light vector.
o (Directional-Light-Color) returns a Color-Type specifying the directional light color.

o (Ambient-Light-Color) returns a Color-Type specifying the ambient light color.

o (Ambient-Temperature) returns the ambient temperature.

o (Viscosity) returns the viscbsity.

o (World-Name) returns a string naming the world.

o (Trace-Name) returns a string naming the trace of the world.

o (Path-Name) returns a string naming the directory into which SEI files will be written.
o (Organism-Name) returns a string naming the organism.

o (Cycle-Number) returns the number of cycles since the SEI started.

Sending State Change Requests
o (Effect-Object-Velocity x y z objNumber) changes the velocity of the specified object.

o (Effect-Object-Acceleration x y z objNumber) changes the acceleration of the specified object.

o (Effect-Object-Rotational-Velocity x y z objNumber) changes the rotational velocity of the
specified object.

o (Effect-Object-Rotational-Acceleration x y z objNumber) changes the rotational acceleration of
the specified object

o (Effect-Object-Torque x y z duration objNumber) applies a Torque for the specified duration to
the specified object.

o (Effect-Object-Force x y z duration objNumber) applies a force for the specified duration to the
o (Effect-Object-Magnetism fimb force duration) applies a specified magnetic force to the specified

~

-
1)
.
"
L]
»
[]
f
=

b %x 1,8 . 0,1 Ma3 AR eed b v Al Vol $a8 0ad Vol 0ad K8 0 T2l Vak N A Sl Sal talh Ol a0 G a0 8l 1 S0 0" A L' 0.0 o WY WY A o™ VN ¥ .\

_-f)
o]
7 .'e
~}
=2
limb for the specified duration.):
t lf
o (Effect-Object-Location x y z ObjNumber) changes the location of the specified object.
Iy 4
o (Effect-Object-Rotation x y z ObjNumber) changes the rotation of the specificd object. N
o (Delete-Object objNumber) removes an object from the world. . "t:
4
o (Create-Emission Emission-Type Origin Intensity Spread Diffusion Decay Duration Rep Bytes
Desc) requests the addition of an emission to the world. The types of the arguments are given by 3
the description of the Emission-Type declare-type above. The Origin should be given as a list of '::
threc doubles. The Desc should be given as a list The fields of an cmission which are not e
specified are Emission-1D, Next, Previous, and Time. LispSEI will select an appropriate Emission- f_
ID and insert the current world time. ’
0N
The following functions currently in EFFECT.C either are complex (they involve some processing to ‘?.
implement, beyond simple data copying) or they are stubs representing future capabilities of the SEI. They '::

will be removed and will at some later time be implemented in Lisp or properly implemented in C: lightcycle,
tempcycle, stop, move, turn, rkeat, emitodor, emitsound, eat, pickup, contact, near, drop, holding, nibble

Control Commands
@ (Set-Debug flag) sets the Debug flag to the specified value, either 0 or 1.

e

o (Set-linkDebug flag) sets the linkDebug flag to the specified value, either 0 or 1.

e (Start-SEI &optional (debugfile “seilog™) (started 1)) calls the COMMUN.C function StartSei.
debugfile is a string; started is an integer. started should be 0 if the SEI is started manually and
then added to the world via a Ul AttachSEI command; 1 otherwise. At the current time, an SEl is
only Start-ed at the end of a master cycle, so nothing will appear to happen until all other ports in
the world send Ok’s to the master, at which time the entire world will be sent to the SEI.

n "\J\"\',ﬁ'.-I’v' ‘ﬁP ‘f‘f? .{..

~

o (Enter-World worldName organismName &optional (debugfile "seilog™)) allows an SEI to join a :Z:
world without requiring the oversight of a UL, All three arguments are strings. worldName should :::,
be the name of the world to join. organismName is the name to be associated with the SEI process a0
(i.e., the mind as opposed to the body). This does not associate the organism with any object in ¢
the world. This may be done later via a Set-Organism-Body call. See the note for Start-SEI R

above regarding interaction with other ports in the world. N
VU
o (Set-Organism-Body objNumber) sets the organism body to be the object numbered objNumber, E:
an integer. e
o (Save-State) dumps the current Lisp process (organism + SEI) into the file specified in CKPfile in o
the directory specified by (Path-Name). : X
o (Ok-To-Proceed) flushes the effector queue to the Master and sends an "OkToProceed™ message. .: ‘
o (Receive-Updated-World) waits for the master to send the updated world; it then absorbs the)
changes. ;.~ E
A
Ry

/Jusrm10/worlidm/src/sei/seidef . 1isp Tue Nov 18 00:28:06 1986 Page 1, Line 1

iss ===~ This 13 Common Lisp =--~ ;:;

ii: World Modeler Sei Library-Definition package.

s:: Started 20-0ct-86 PHS.

t:: See /mi/usr/pshell/worldm/sei/seiprop.press or .mss for complete details.
;s: Uses lispsei.lisp, the base-leve) 1isp SEI.

+: This provides macros for defining sensors and filters.
:: The top-level functions in this module are:

: (def-sensor {sensor-name> <sense-type> <objectd> <entity-filtersd
H <field-mungers>)

i7: (sense ‘<sensor-name>)

;3¢ (def-f1lter <named> <(params> <sense-type> . <body>)

1s: (def-fi91d-munger <name> <params> <{sense-type> <field> . <body>)
:3: (#="-constraint <name> <(paramsd> <senso-type> <functiond)

(reql)

(Listen)

(Taste)

(Smell)

(See)

(defvar *TRACE-SENSE® NIL)

s wo @s w0 a0

L

SN
s

(defvar *SOUND-TYPE® O ;iEquivalent to the defines fn worlid.h
(defvar ®SMELL-TYPE® 1

(defvar *MAX-0BJECTS® 64) _

{defvar *GOT-OBJECT-ARRAY® (make-array °*MAX-OBJECTS® :element-type ‘(mod 2)))
1:: Bit K tn the bit *GOT-0BJECT-ARRAY® is on iff object N has been retrieved
s:: from C 1n the current cycle.

(defvar *GOT-0BJECT-ARRAY-CYCLE® 0.0)

s3: Equal to the cycle that *GOT-OBJECT-ARRAY®* was gotten on.

(defvar *OBJECT-ARRAY®* (make-array *MAX-OBJECTS®*))

(defvar *SENSES® ‘(vision hearing smell taste touch))
(defvar *ENTITIES® '(objoct sound smell taste contact))

;1. Wanked from LispSEI.V:
(defvar PRIMITIVE 0)
(defvar COMPLEXO0BJ 1)
(defvar POLYGON 2)

{(defvar CYLINDER 3)
(defvar CIRCLE 4)

(defvar SPHERE §6)

(defvar NOOBJECT 8)

&% 5%%5% 'y

:: Like concat but esxpands what 1t can at expansion time and otherwise wraps
i a symbol-name call to function calls,
defmacro smash (&rest seqs)

\140(1intern (concatenate ‘'string ,@8(prepare-seqs seqs))))

.
~
»
S
“
~
~
-
-
.

P
e

‘s &
WA,

(eval-when (load compile eval)
(defun prepare-seqs (seqs)
(mapcar #'prepare-seq 30Qs)) .

.
«

o [

[
’ .

(defun prepare-seq (seq)
(cond ((numberp seq) (princ-to-string seq))
((1istp seq) \140(princ-to-string ,seq))
%(not g;;ringp seq)) \140(smart-symbol-name ,seq))
t seq

(defun smart-symbol-name (thing)
(cond ((or (numberp thing) (11stp thing))

/usrmi0/worldm/src/sei/seidef.1isp Tue Nov 18 00:28:06 1986 Page 2, Line 70 f{i

{(princ-to-string thing))
((not (stringp thing)) (symbol-name thing))

(t thing))))

{defmacro putprop (obj val prop)
\140(setf (get ,obj .prop) .val))

(defmacro Object-Object-Number (Object)
\140(Object-Type-Objaect-Number ,0bject))
{defmacro Object-Name (Object)
\140(0bject-Type-Object-Name ,Object})
(defmacro Object-Previous-Object (Object)
\140(Object-Type-Previous-Object ,0bject))
(defmacro Object-Next-Object (Object)
\140(0bject-Type-Next-Object .0bject))
(defmacro Object-Part-0f (Object)
\140(0bject-Type-Part-Of ,Object))
{defmacro Object-Part-Collisfon (Object)
\140(0Object-Type-Part-Collision ,Object))
(defmacro Object-Part-Magnetism (Object)
\140(0bject-Type-Part-Magnetism ,0bject))
(defmacro Object-Transform (Object)
\140(Object-Type-Transform ,Object))
{(defmacro Object-Scale-Factor (Object)
\140(0bject-Type-Scale-Factor ,Object))
{(defmacro Object-Location (Object)
\140(Object-Type-Location ,0bject))
{defmacro Object-Rotation (Object)
\140(0b ject-Type-Rotation ,Object))
{defmacro Object-Velocity (Object)
\140(Object-Type-Velocity ,0Object))
(defmacro Object-Rotational-Velocity (Object)
\140(0bject-Typs-Rotational-Velocity ,0bject})
(defmacro Object-Acceleration (Object)
\140(0Object-Type-Acceleration ,0bject))
(defmacro Object-Rotational-Acceleration (Object)
\140(Chject-Type-Rotational~Acceleration ,0Object))
(defmacro Ooject-Forces (Object)
\140(Object-Type-Forces ,0bject))
(defmacro Object-Buoyancy (Object)
\140(0Object-Type-Buoyancy ,0Object))
(defmacro Object-Mass-Center (Object)
\140(0bject-Type-Mass-Center ,0Object))
{defmacro Object-Mass (Object)
\140(0bject-Type-Mass ,0Object))
(defmacro Object-Enclosure (Object)
\140(0bject-Type-Enclosure ,0bject))
(defmacro Object-Kind-0f-Object (Object)
\140(0Object-Type-Kind-0f-Object ,Object))
(defmacro Object-Composed-0f (Object)
\140(0bject-Type-Composed-0f ,0bject))
(defmacro Object-Elasticity (Object)
\140(Object-Type-Elasticity ,Object))
{(defmacro Object-Restitution (Object)
\140(0Object-Type-Restitution .Object))
{defmacro Object-Friction (Object)
\140(0bject-Type-Friction ,Object))
{defmacro Object-Inside-Color (Object)
\140(0b ject-Type-Inside-Color ,Object))
(defmacro Object-Outside-Color (Object)
\140(0bject-Type-Outside-Color ,0bject))
(defmacro Object-Outside-Surface-Texture (Object)
\140(0Object-Type-Outside-Surface-Texture ,0bject))
(defmacro Object-Inside-Surface-Texture (Object)
\140(0b ject-lype-Inside-Surface-lexture ,0bject))
(defmacro Ohject-Taste (Object)
\140(0bject-Type-Taste .Object))

rANA™

T B S0 S8 SN LY, oy
et W

o,

AL

2 1 v
PN .

L)

L ARs

5

7 2

kA

o o W W "o -,
*Jﬁ_ASJ\,'_*A\Jﬁin.‘, l\:\fh\ .51\:5‘;\.:--(-:V:\'.\\';\V.~

Jusrml0/worldm/src/sei/seilib.1isp Mon Nov 17 17:49:65 1986 Page 3, Line 139

si: Only see things which are less than max-distance meters away from
$ii your eye.
(def-constraint object-distance-constraint (max-distance) vision
(< (vector-distance (abs-object-location entity)
(abs-object-location gensorodj))
max-distance))

Only sense the smells that are near your "nose™ (1.e., closer than
max-distance meters away).
f-constraint smell-distanca-constraint (max-distance) smell
< (vector-distance (emission-origin entity)
{(abs-object-location sensorobj))

P ee o8
0 oo oo
NG oo wo

max-distance))

i3 Only sees objects which are bigger than object-enclosure meters.
(def-constraint object-size-constraint (object-enciosure) vision
(> (object-anclosure entity)
object-enclosure))

::: Only smells smells which are stronger than smell-threshold.
(def-constraint smell-intensity-constraint (smell-threshold) smel)
(> (emission-1intensity entity)
smell-threshold))

::: Only taste those tastes which are in contact with the sensor.
(def-constraint only-taste-touching () taste

(member-if #'(1ambda (contact)
] (eq entity (object-taste (contact-objecti-part contact))))
4 {contacts-of sensorobj)))

i: Only feel those contacts which are touchfng the sensor. This {s
:; needed because contacts are just a 1ist of all the contacts in the world.
def-constraint only-my-contacts () touch
(or (eq (contact-objecti-part entity) sensorobj)
(eq (contact-object2-part entity) sensorodbj)))

N ae ab

(def-sensor sample-vision vision “organism®
((cone-of-vision (cos (/ pti 6))) disalliow-heads) ())

138 —emmme- sereesccecas ~ Sample Effector Commands --<-=-----cccccccoo-o P

1i: Moves the organism forward (1,0., in the current direction) for one
i3 time unit with the given force (scalar, in Newtons).
(defun move-forward (force objnum)
(Yot ((objdir (object-rotation (get-object objnum))))
(effect-object-force
(®* force (vertex-x objd1r;;
(* force (vertex-y objdir
; g‘oforco (vertex-z objdir))
‘ objnum)))

(defun move-backward (force objnum)
, (1ot ((objdir (object-rotation (get-object objnum))))
. (effect-object-force
- (® force (- (vertex-x objdir))
' (® force (- (vertex-y objdir))
(® force (vertex-z objdir))

objnum)))

: Applies the given torque (angular force) to object for one time untt,
: Note that torgque * moment ® angular acceleration, and moment 1s

: proportiona) to mass.

: First, find the current direction of the object. Convert input

; magnitude and angle (in radians) to x,y. Add 3o current direction

: and send torque command to master,

efun turn-left (objnum magnitude Roptiona) (angle (/ pi 20)))

S T e e e L e T ST A

1
Jusrml0/worldm/src/sei/seilib, Visp Mon Nov 17 17:49:565 1988

(1et* ((object (get-object objnum))

- (objdir (object-rotation object))
(dirx (vertex-x objdir})
(diry (vertex-y objdir)
(dirz (vertex-z objdir)
(addx {* (cos angle) magnituds)
(addy (* (sin angle) magnitude)))

(effect-object-torque (+ dirx addx) (+ diry addy) dirz 1 objnum)))

(defun turn-right (objnum magnitude Soptional (angle (/ pt 20)))
(1et® ({object (get-object objnum))

(objdir (object-rotation object))
(dirx (vertex-x objdir))

diry (vertex-y objdir

dirz (vertex-2 objdir

(addx (® (cos (- angle)) magnitude

(sddy (* (sin (- angle)) magnitude)))

(effect-object-torque (+ dirx addx) (+ diry addy) dirz 1 objrum)))

A
At ULt N

Page 4, Line 208

W00,y 190 BT APRY u F JR PP T LR (T RIS P PP

BTAFATE Y

v,

L)
]

v '.'.:‘.-'

e

ﬁf ‘(‘.I.: ' '

“»
5

.
“

»
Y

A
-_

12
/usrml0/worldm/src/sei/seidef . lisp Tue Nov 18 00:28:06 1986 Page 5, Line 277 !

(check-filters ', efilters entity)

(check-mungers ', fmungers entity) 5
(putprop ',sname ',stype 'sense-type) i
{(putprop ‘.sname entity ‘entity-type)
{putprop ',sname filters ‘'filters)
(putprop ',sname constraints 'constraints)
(putprop ',sname ’',fmungers ‘fmungers)
(putprop ‘,sname object 'sensorobj)

(push '.sname (get ',stype 'sensors)))) 3

(defmacro pp-sensor (sname &optional (verbose nil))
(cond ((not (get sname ‘entity-type)) y

(format t "~S ts not a sensor, sorry bud.~X" sname))
(t

format t “~S sensor ~S: ~X" (get sname 'sense-type) sname)

format t "Attached to object: ~A~%" (get sname ‘'sensorobj))

(maybe-formatl t "Filters: ~S~X" (get sname 'filters))

(maybe-formatl t "Constraints: ~S~-%" (get sname 'constraints

(maybe-formatl t "Field mungers: ~SX" (get sname ‘fmungers))

Aoty o

St

)
)

t)

1:: Only format the single value 1f it is non-nil.
(defun maybe-formatl (stream control-string value)
(if value '
(format stream control-string value)))

(defun print-entities (str entities etype)
(format t str)
(dol1st (entity entities)
(format t " ~A" (entity-name entity etype))))

L8 S A L

-

(defun entity-name (entity etype)
(ecase etype
(OBJECT (object-name entity))
(SOUND (smash "Sound " (emission-1d entity)))
(SMELL (smash "Smell = (emission-1d entity)))
(TASTE (smash "Tasto " (1ist (taste-sweot ontity) (taste-sour entity)
(taste-bitter entity) (taste-salty entity))))
(TOUCH (smash “Force " (apply-force entity)))))

€, l;r’

i A 2

PR
Pty

::: Returns the specifications of constraints in the fnames list.
(defun get-constraints (fnames)
(1ot (res) -4

(dolist (fname fnames) a

{(if (constraintp (get-name fname) o

(push (eval-args fname) res)) a\
(nreverse res))) i
(defun get-fiiters (fnames) ;
(let (res) o

(dolist (fneme fnames) o

(1f (T1)1terp (get-name frame)) S,

(push (eval-args fname) res))) S,

(nreverse res))) I

132 Chocks to make sure that each of the names in fnames is either a filter a

i:. or constratint, and for every one that isn't, tell the user. ;
;:: Also each one must be & filter of the appropriate entity type. >
(defun check-fiiters (fnames entity) X
(doVist (fname fnames) |
(let ((rea)-fname (get-name fname))) ;
(cond ((and (not (f1lterp real-fname)) !

{not (constraintp real-fname))) W

(format t

“%~S 1s not s constraint or filter, Def-sensor will ignore it.~%X" "

real-fname)) Ol

(t (check-typebnumbur fname resl-fname entity)))))) it

(defun check-mungers (fnames entity) ’
.

™ \J

A N N + i N .. . - AT RIS AN RS €= - - -y = aw -
N y .'\ S ,7:. .“- &Ly .‘ .‘I ~ D c‘! 0 n“ -‘O - ..\ <A " 0 -“ ~ A -‘l ~ L)'mm.n'_‘.m\.r};“;“;‘:h\:n% t

s

' a!

13
Jusrm10/wortdm/src/sei/seidef . 1isp Tue Nov 18 00:28:06 19886 Page 6, Line 346

N o [o fo fo *r-p,:,

{dolist (fname fnames)
(1ot ((real-fname (get-name fname)))
(cond ((not (mungerp real-fname))
(format t
“%~S is not a munger, Def-sensor will ignore it.~X"
real-fname))
(t (check-typeknumber fname real-fname entity))})))

si: PRECONDITION: NAME names a defined filter, constraint or field-munger.
(defun check-type&number (spec name entity)
(cond
((not (eq (get name ‘entity-type) eantity))
(error "~S must be a filter for entity type ~S but 1s not.~X*"
entity))
((not (= (get-num-params spec)
{(get name ‘num-params)))
(error "~S must be given ~S params but was only given ~§.~%X"
name
(get name ‘num-params)
(get-num-params spec)))))

::: Since f1l1ter names, constraint names and object names may be 1ists with
t1:; additional parameters.
(defun get-name (fname)
(17 (atom fname)
fname
(car fname)))

(defun get-num-params (fname)
(if Satom fname)

(Yength (cdr fname))))

137 If fname has arguments, then replace each argument by that argument
::; evaluated. For example, if the user gives a (cos (/ pt 4)) arg to a
ii: f1lter fn by writing (my-filter (cos theta)), this fn would change that
ti: to (my-filter 0.7071067) and return it.
(defun eval-args (fname)
(1f (atom fname)
fname
(do ((args (cdr fname) (cdr args)))
((null args) fname)
(rplaca args (eval (car args));)))

(defun constraintp (name)
(get name ‘constraint))

(defun filterp (name
(get name ‘filter)

{defun mungerpg (name)
(get name ‘munger))

- {defmacro def-f{lter (name params sense-type &rest body)
(when (or (get name ‘constraint)
(get name ‘munger))
(cerror "Re-define it as a filter”
*~S 13 already defined as & constraint or munger." name)
(putprop name nil ‘constraint)
(putprop name nil ‘munger))
(1ot ((entity (sense-to-entity sense-type)))
\140(progn
(format t "Defining filter ~S5~%X" ', name)
(putprop '.name ‘,entity ‘entity-type)
(putprop *.name t ‘filter)
(putprop ‘.name .(length perams) 'num-params)
(defun ,name (entitres sensorobj ,@params)
.8body))))

N
&
.
.
\
L 5
)
L)

1

AT IO

/usrml0/worldm/src/sei/seidef . 1isp Tue Nov 18 00:28:06 1986

Page 7, Line 415

(defmacro def-constraint (name params sense-type &rest body)
(when (or (get name ‘filter)
(get name ‘munger))
(cerror "Re-define it as s constraint®
“.S i3 already defined as a filter or mungsr.” name)
putprop name afl ‘Tivier)
putprop name nil ‘munger))
(1ot ((entity (sense-to-entity sense-type)))
\140(progn
format t "Defining constraint ~S~%X" ‘',name)
putprop ',name ',entity ‘entity-type)
(putprop '.name t ‘constraint)
(putprop ‘.name ,(length params) ‘num-params)
(defun .name (entity sensorobj ,8params)
.0body))))

: When the given Tie1d is accessed for the given type of entity.
: pre-process the value with the code in <body>.

iéofnucro def-field-munger (name params sense-type field &rest body)
(when (or (get name °'filter)

(get name ‘constraint))
(cerror “Re-define 1t ss a munger”
“~S i3 slready defined as a fiiter or constraint.” name)
(putprop name nil ‘filter)
(putprop name nil ‘constraint))
(1ot ((entity (sense-to-entity sense-type)))
\140(progn
(format t “Defining munger ~S-X" ‘', name)
(putprop ‘,name °,field ‘field)
putprop ',name ‘,entity ‘entity-type)
putprop ‘.name t ‘munger)
(putprop '.name ,{length params) ‘num-params)
(defun ,name (field) .@params)
.8body)))

B T Y S S e et
AT I N MY AP AT RS L PARE SIS TN VLR F s TN

S fiatalia" At ot ate’ A0 ata" A~ olin- oa~ e St/ ,

Jusrml0/worldm/src/sei/seidef 1isp Tue Nov 18 00:28:06 1986 Page 8, Line 451

The biggee.

e
e
.
-

For now, flelds are munged only after the filters are executed. This
makes things much easier.
Algorithm:
(1) get inftial 1ist.
(2) take out those entities which don't meet all the constraints.
3) pass the entities Vist through all the filters.
4) munge the sppropriate fields
(5) return the result.
fun gense (sname)
1ot ((otype (get sname ‘entity-type)))
{(if (null etype)
(error “"Sorry, ~S is not a sensor defined by def-sensor.~%" gname))
(ecase otype
(OBJECT (format t "Look1ng...~1")g
(SOUND (format t "Listening...~X"))
(SMELL (format t “"Sniffing...~%"))
(TASTE (format t "Tasting...~X))
(CONTACT (format t "Feeling...~%)))
(Yot ((entities (make-initial-entity-11st otypo))
(sensorobj (get-object-named (get sname ‘sensorobdj))))
(17 ®TRACE-SENSE® (print-entities "Initial 11st is: * entities etype))
(when (nul) entities)
(cerror "Send it through the filters anyway.~X"
*Sensor ~S sensed nothing.~X" sname))
(setq entities (constrain-entities entities sname sensorobj))
(setq entities (filter-entities entities sname sensorobj))
(munge-fields entities sname)
entities))) -

P es o0 03 @0 oo 0 00 oo
€L oo oo oo 0 wo oo oo @

PN @ oo o0 ws 0 oo 00 ws o0

::: For every filter tn the filter 11st associated with the given sensorobj,
i:: pass the entities 11ist through f1t.
(defun filter-entities (entitfes sname sensorobj)
(Yot ((fname nil)
(fparams nil)
(etypo (get sname ‘ont1ty type)))
{(dolist (filter (get sname ‘filters))
(cond ((atom filter)
(setq fname filter fparams nil))
(t (sotq fname (car filter) fparams (cdr filter))))
(when *TRACE-SENSE®
format t “Calling filter ~S" fname)
if fparams
format t " with arguments ~S5.~X" fparams)
format t *.~X")))
(setq entities (apply fname \140(,entities ,sensorobj .Ofparams)))
: (1f ®TRACE-SENSE®* (print-entities "List 1s now: " entities etype))))
q entities)

i:: For each entity 4n the entities 14st, 1t must meet all the constraints
:i: associated with the sensor sname to stay in the result.
{(defun constrain-entities (entities sname sensorobj)
(1ot ((cname nil)
(cparams nil)
(etype (get sname ‘entity-type)))
(dolist (constraint (get sname ‘constraints))
{(cond ((atom constraint)
(setq cname constraint cparams ntl))
(t (setq cname (car constraint) cparams (cdr constraint))))
(when ®*TRACE-SENSE®
format t "Calling constraint ~S" cname)
if cparams
(format ¢ = with arguments ~S.~%" cparams)
(format t ~.~%")))
(et ((rem-params (cons sensorobj cparams)))
(do ((entiLy entities (cdr entity))
{(laste nil entities))
((null entity) entities)

O = L LG AN LN AL AT AT A A

Sal faf Fel ik Fab ¢ YA R e tad ool tap tol 0eg . IR R AT R T ak ¥ . vy

16 _
Jusrm10/worldm/src/sei/seidef.1isp Tue Nov 18 00:28:06 1986 Page 9,

(cond ((not (upply cname (cons (car entity) rem-params))) :;constrained
{if *TRACE-SENSE®
(format t "Entity ~5 gets constrained.~%"
(entity-name (car entity) etype)))
(1f (null laste)
(setq entities (cdr entities))
(setf (cdr laste) (cdr entity))))))))
(171‘IRA§§ SENSE® (print-entities "List is now: * entities etype)})
entities

3:: Won‘t work for all field types since LispSEl doesn't provide setting
::: functions for all field types.
(defun munge-fields (entities sname)
(let ((mname nil)
(nparnms nil)
etype (get smame ‘entity-type)))
(dolist (munger (get sname 'fmungers))
{(cond ((atom munger)
(setq mname munger mparams nil))
(t (setq mname (car munger) mparams (cadr munger))))
{let ((f101d (get mname ‘'field)))
(when ®TRACE-SENSE®
format t "Munging field ~S with ~S" f{eld mname)
1f mparams
(format t = with arguments ~S.~X" mparams)
(format t ".~%X")))
(dolist (entity entities)
(set-field etype fi1e1d entity
(funcall mname (cons (get-field mname field) mparams)}))))))

(defun make-initial-entity-1ist (etype)
{ecase otype
{QBJECT (make-object-list))
(SOUND (make-sound-11st))
(SMELL (make-smell-113t))
(TASTE (ncko-tasto-l1st);
(CONTACT (make-feel-~11ist))))

;:: Make and return & 11st containing al) the objects in the world.
(defun make-object-1ist ()
(make-object-11st0 (object-head)))

(defun make-object-11st0 (objnum)
(if (not (zerop objnum))
(do® ((topobj objnum (object-next-object object))
(object (get-object topobj) (get-object topobj))
{res (cons object (make-object-11st0
(object-composed-of object)))
(cons object (nconc (make-object-11st0
(object-composed-of object)) res))))
((zerop (object-next-object object)) res))))

{(defun make-feel-11st ()
(contacts))

1:: Make ang return a 1ist containing all the emissions of type sound in the world.

(defun make-sound-11ist ()
{do ((emitnum (emission-head) (pet-emisgion-next emission))
(emission nil (emission emitnum))
(res n1) (4f (soundp emission)
{cons emission res)
res)))
((ru)1 emitnum) res)))

(defun make-smelV-11st ()
(do ((emitnum (emission-head) (get-emission-next emigsion))
(emisgion nil (emission emitnum))
{(res ni) (1f (smellp emission)
(cons emission res)

Line 520

-y
-

TP i AR

-

.

BT 3% S A A

v £
o

""'I

l{l i,T’l

e Te T e 0

o .?' ol

XN Ly

DN AN R N A A T R AT A A

rv“, _wmmmm.w.?.?y.

oo 17

Jusrm10/worldm/src/sei/seidef.1isp Tue Nov 18 00:28:06 1986 Page 10, Line 589

res)))
({(null emitnum) res)))

(defun soundp (emission)
(* (get-emission-emission-type emission) ®SOUND-TYPE®))

(defun smellp (emission)
(= (get-emission-emission-type emission) *SMELL-TYPE®))

137 Just like make-object-11st except returns ths taste fields instead of
+i: the whole objects.
{(defun make-taste-1ist ()

(make-object-11st0 (object-head)))

{defun make-taste-11st0 (objnum)
(if (not (zerop objnum))
(do* ((topobj objnum (object-next-object object))
(object (get-object topobj) (get-object topodbj))
{res (11ist object)
(cons (object-taste object)
(nconc (make-object-11st0
(object-compcsed-of object)) res))))
((zerop topob]) res))))

iis Return 8 T1st containing all the 11sts of entities sinsed by each
s:: sensor of the FEEL type.
(defun fesl ()

(get-all-sensory-input 'touch))

(defun hear ()
(get-all-sensory-input ‘'hearing))

(defun taste ()
(get-ali-sensory-input 'taste))

(defun smell ()
{get-all-sensory-input 'smell))

(defun see ()
(get-all-sensory-input ‘vision))

(defun get-all-sensory-input (sense)
{mapcar #'(Yambda (sensor)
(sense sensor)) -
(get sense °'sensors)))

